Final Presentation

October 28, 2022

Specific Project Details & Results

Drift detection & Explanations
 Universität Bielefeld Institut f
ür Kognition und Robotik (CoR-Lab)

Robert Feldhans

- Drift Explanations via Polygons and Hyperboxes Universität Paderborn - Arbeitsgruppe Data Science (DICE) Adrian Wilke
- Uncertainty Quantification

Universität Paderborn - AG Intelligente Systeme und Maschinelles Lernen (ISML) Mohammad Hossein Shaker

 Semalytix' Business Use Case Semalytix GmbH Fabian Hommel

Drift detection & Explanations

- Joint Paper Drift detection in text data with document embeddings [1] at IDEAL
- Drift detection is crucial for drift explanation
- Tested four drift detectors with two datasets in several scenarios
- Least-Squares Density Difference and Kernel-Two-Sample best Drift detectors, LSDD better on real-world Twitter dataset
- Lower embedding dimensions tend to produce better drift detection results

Drift explanation via Difference Accentuation [2]

- Drift detected means new distribution differs from old one
- Accentuate these differences by creating many dimension reductions and choose the one where both distributions differ the most
- Then use this dimension reduction to cluster the data; differentiate each cluster via labels (tf-idf)

Figure: Data from the Amazon movie review dataset with one (left) and five star reviews (right).

EML4U Final Presentation

Model update explanation via Contrastive Explanations [3]

- Contrastive explanations take a data point and calculate the most similar one of a different classification
- Do this with a lot of points before and after model update and calculate impact for each parameter

Figure: Changes in counterfactual explanations for the house prices data set.

Drift Explanations via Polygons and Hyperboxes

- Article (in progress): Explaining Drift in Text Data with Document Embeddings [4]
- Bridging the gap:
 - Unsupervised approaches, no labels
 - Benchmark dataset to evaluate approaches
- ► Drift Explanation with Polygons and with Hyperboxes
- Use resulting drift explanations to resolve model conflicts

Drift Explanation via Polygons

Text

"Might have been profound for it's time but... When I pay almost 30. for a DVD I expect alot ..."

Embed BERT / Doc2Vec (BoW)

High-dimensional embeddings (e.g. 50 or 768 dimensions) [-0.02514367, -0.29414916, ... 0.40210924, -0.09406912]

Reduce UMAP / TSNE / PCA

2-dimensional embeddings [0.04848728, -0.2670002]

Drift Explanation via Hyperboxes

Setup: Two sets of embeddings, *A* and *B*.

Step 1: Collect values of single dimensions

A₁: [2,6,3,8,5,...] A₂: [7,4,1,0,9,...] Dim₁(A): [2,7,...] Dim₂(A): [6,4,...]

Step 2: Create 1-dimensional bounding box for each dimension. Remove outliers (percentiles).

 $Dim_{1}(A): [2,7,7,6,7,9,9,42,9]$ $Dim_{2}(A): [6,4,1,6,4,6,4,55,6]$ $\rightarrow Box_{Min}(A_{1}) = 6, Box_{Max}(A_{1}) = 9$ $\rightarrow Box_{Min}(A_{2}) = 4, Box_{Max}(A_{2}) = 6$

Step 3: Get prototypes by checking if values of embeddings *B* are inside bounding boxes of *A*.

 $B_1: [8,3,...]$ $B_1 \in Box(A_1)? 6 \le 8 \le 9 \rightarrow Yes$ $B_1 \in Box(A_2)? 4 \nleq 3 \le 6 \rightarrow No$ Score = 1 + 0 + ... < total dimensions $\rightarrow B_1 \in Prototypes$

Result: Frequent Words in Clusters

(Words in multiple clusters removed, e.g. movie, film, dvd)

Uncertainty Quantification Representing uncertainty in ML

Ensemble-based Uncertainty Quantification: Bayesian versus Credal Inference [5]

- Machine learning is inseparably connected with uncertainty.
- Uncertainty of a learner can be represented in different levels:
 - Level 0: Deterministic
 - Level 1: Probabilistic
 - Level 2: Bayesian

Uncertainty Quantification Representing uncertainty in ML

Ensemble-based Uncertainty Quantification: Bayesian versus Credal Inference [5]

- Machine learning is inseparably connected with uncertainty.
- Uncertainty of a learner can be represented in different levels:
 - Level 0: Deterministic
 - Level 1: Probabilistic
 - Level 2: Bayesian

Uncertainty Quantification Representing uncertainty in ML

Ensemble-based Uncertainty Quantification: Bayesian versus Credal Inference [5]

- Machine learning is inseparably connected with uncertainty.
- Uncertainty of a learner can be represented in different levels:
 - Level 0: Deterministic
 - Level 1: Probabilistic
 - Level 2: Bayesian

Uncertainty drift detection

EML4U Final Presentation

Model update strategies

- No model update: train the model only with the first episode and never update.
- Uncertainty: Update the model only if the uncertainty value of the new episode is higher than base line uncertainty value (Only requires labels when making updates).
- Error rate: Update the model if the error rate of the new episode is higher than base line error rate (requires labels for every episode)
- Update on every episode: requires labels for every episode and the most resource intensive

Experiment and results

Synthetic Data Generation detail

- normal_samples = 100000
- Drift samples (different distribution) = 50000
- n_features= 50
- n_informative_features= 30
- n_classes = 5

Results averages over 10 runs with different random seeds

Experiment and results

Amazon movie reviews dataset

- normal_samples = 10000
- n_features= 50
- n_classes = 5

Results averages over 10 runs with different random seeds

Semalytix' Business Use Case

- ► (1) Business Use Case and Problem Definition
- ► (2) Data and ML Model
- ► (3) Global Drift Detection
- ► (4) Localized Drift Detection
- ► (5) Interactive Case Study
- ► (6) Results and Discussion
- ► (7) Conclusion

Semalytix' Business Use Case

Business Use Case and Problem Definition

Context:

- Semalytix is trying to understand needs and burdens of patients in online patient experience text data
- This data is very heterogeneous: Style, emotional content and level of medical expertise
- We turn this unstructured data into structured data via a large suite of NLP models
- ► We regularly receive data updates or completely new sources of data Problem:
 - Given a model M that was trained on a corpus D1 and a new data source D2, does M generalize to D2 without substantial loss in performance?
 - Without annotated ground truth!

Experimental Procedure

For experiments, we used data from 5 real use cases

- ► Reference data (D1) is always from the same big training corpus
- Target data (D2) data is from five distinct sources that models have not seen
- We sample 10k documents per corpus, pre-filter by relevance for life sciences and split the documents into sentences.

Experimental scenarios:

- Global drift detection in target data
- Local drift detection in target data

Experiment Data and ML Model

The tested model was a transformer-based medical sentiment model

	Number of Sentences in D1	Number of Sentences in D2
Corpus Pair 1	36524	24822
Corpus Pair 2	36886	11981
Corpus Pair 3	36306	11700
Corpus Pair 4	37699	11913
Corpus Pair 5	37893	11174

Table: Number of sentences per corpus pairing.

Global Drift Detection

Research Question: Which methods can be used to detect drift in patient experience data?

- Two established methods [1]: the Kolmorogov-Smirnov test (KS) and the Least-Squares Density Difference Estimation method (LSDD)
- ► Three other, distribution-distance-based methods:
 - 1. Jensen-Shannon-Distance (JSD) between word count distributions
 - 2. JSD between predicted label distributions
 - 3. JSD between predicted label probability distributions

Localized Drift Detection

Research Question: Is it possible to localize regions of strong drift in the target data?

- We embed all sentences for a corpus pair D1 and D2 with a transformer model
- Then, we cluster the embedded sentences in D1
- For each cluster in D1, we compute the centroid and obtain its k nearest neighbors in D2. k is chosen as the size of the cluster in D1
- This results in a list of cluster pairings that we can examine with drift detection methods

Interactive User Interface Case Study

Research Question: Can the distance measurements from the localized approach be used in a user interface to decide whether a model update is necessary?

- We sort the local region pairs by descending distance
- For the region pairs with highest distance, study subjects were asked to rate the perceived difference between regions based on four comparative visualizations:
 - 1. Word Clouds
 - 2. Scatter Plots
 - 3. Predicted Label Bar Charts
 - 4. Predicted Probability Histograms

Interactive User Interface Case Study

8

6

4

2

0-

0 2

Dim2

Cluster in D1

Nearest neighbours in D2

Interactive User Interface Case Study

Results of Global and Localized Drift Detection

- Global Drift Detection
 - KS and LSDD detected drift in all five corpus pairs
 - KS and LSDD correlate strongly with the Word Count Distribution Distance and also with the Label Distribution Distance
 - might be due to the sentiment task, which is sensitive to certain words
 - The Prediction Probability Distribution Distance does not correlate with any of the other methods
 - Does active learning lead into a different direction than our approach?
- Local Drift Detection
 - Variance in distances is much higher
 - KS and LSDD detect drift in some regions, but not all

Results of the Interactive Interface Study

Interactive Interface Case Study

- Users report that the interface is appealing, but it is hard to find the perceived effects in the raw data
- The ratings from the label bar charts and the scatter plots correlate with the respective distance metrics
 - These visualizations seem to provide meaningful information
- The ratings for the word clouds and probability histograms did not correlate with the respective distance metrics
 - Discard or improve these visualizations

Conclusion

- Finding ground truth for drift detection in real-world patient experience data is hard!
- Future research needs to be invested into ground-truth manifestation of drift in real-world data sets
- The localized approach is promising, especially in a human-in-the-loop interface
- Semalytix has started initiatives to integrate local drift detection into productive workflows
- ► A lot of open opportunities for fine-tuning the approach
 - The choice of detection methods and their inputs
 - How to choose and pair regions
 - Which visualizations to use

EML4U Publications I

- [1] R. Feldhans, A. Wilke, S. Heindorf, M. H. Shaker, B. Hammer, A.-C. Ngonga Ngomo, and E. Hüllermeier, "Drift Detection in Text Data with Document Embeddings," in *Intelligent Data Engineering and Automated Learning – IDEAL 2021* (H. Yin et al., ed.), (Cham), pp. 107–118, Springer International Publishing, 2021.
- [2] R. Feldhans and B. Hammer, "Drift Explanation with Difference Accentuation (upcoming)," 2022.
- [3] A. Artelt, F. Hinder, V. Vaquet, R. Feldhans, and B. Hammer, "Contrasting Explanations for Understanding and Regularizing Model Adaptations," *Neural Processing Letters*, 2022.
- [4] A. Wilke, S. Heindorf, R. Feldhans, B. Hammer, and A.-C. Ngonga Ngomo, "Explaining Drift in Text Data with Document Embeddings (upcoming)," 2022.

EML4U Publications II

- [5] M. H. Shaker and E. Hüllermeier, "Ensemble-based Uncertainty Quantification: Bayesian versus Credal Inference," 2021.
- [6] S. Schröder, A. Schulz, P. Kenneweg, R. Feldhans, F. Hinder, and B. Hammer, "The SAME score: Improved cosine based bias score for word embeddings," 2022.
- [7] H. M. Zahera, R. Jalota, M. A. Sherif, and A.-C. N. Ngomo, "I-AID: Identifying Actionable Information From Disaster-Related Tweets," *IEEE Access*, vol. 9, pp. 118861–118870, 2021.
- [8] H. M. Zahera, D. Vollmers, M. A. Sherif, and A.-C. N. Ngomo, "MultPAX: Keyphrase Extraction using Language Models and Knowledge Graphs," in *ISWC*, Springer, 2022.

EML4U Publications III

[9] A. Bondarenko, M. Wolska, S. Heindorf, L. Blübaum, A.-C. N. Ngomo, B. Stein, P. Braslavski, M. Hagen, and M. Potthast, "CausalQA: A Benchmark for Causal Question Answering," in *COLING*, pp. 3296–3308, 2022.

Thank you for your attention!

- This work has been supported by the German Federal Ministry of Education and Research (BMBF) within the project EML4U under the grant no 01IS19080
- Website: https://eml4u.github.io
- Software: https://github.com/EML4U
- Questions?