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Drift detection & Explanations

▶ Joint Paper Drift detection in text data with document embeddings [1]
at IDEAL

▶ Drift detection is crucial for drift explanation
▶ Tested four drift detectors with two datasets in several scenarios
▶ Least-Squares Density Difference and Kernel-Two-Sample best Drift

detectors, LSDD better on real-world Twitter dataset
▶ Lower embedding dimensions tend to produce better drift detection

results
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Drift explanation via Difference
Accentuation [2]

▶ Drift detected means new distribution differs from old one
▶ Accentuate these differences by creating many dimension reductions

and choose the one where both distributions differ the most
▶ Then use this dimension reduction to cluster the data; differentiate

each cluster via labels (tf-idf)

Figure: Data from the Amazon movie review dataset with one (left) and five star
reviews (right).
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Model update explanation via Contrastive
Explanations [3]

▶ Contrastive explanations take a data point and calculate the most
similar one of a different classification

▶ Do this with a lot of points before and after model update and
calculate impact for each parameter
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Figure: Changes in counterfactual explanations for the house prices data set.
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Drift Explanations
via Polygons and Hyperboxes

▶ Article (in progress):
Explaining Drift in Text Data with Document Embeddings [4]

▶ Bridging the gap:
▶ Unsupervised approaches, no labels
▶ Benchmark dataset to evaluate approaches

▶ Drift Explanation with Polygons and with Hyperboxes
▶ Use resulting drift explanations to resolve model conflicts
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Drift Explanation via Polygons
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Drift Explanation via Hyperboxes

Setup: Two sets of embeddings,
A and B.

Step 1: Collect values of single
dimensions
A1: [2,6,3,8,5,...]
A2: [7,4,1,0,9,...]
Dim1(A): [2,7,...]
Dim2(A): [6,4,...]

Step 2: Create 1-dimensional
bounding box for each
dimension. Remove outliers
(percentiles).

Dim1(A): [2,7,7,6,7,9,9,42,9]
Dim2(A): [6,4,1,6,4,6,4,55,6]
→ BoxMin(A1) = 6,BoxMax(A1) = 9
→ BoxMin(A2) = 4,BoxMax(A2) = 6

Step 3: Get prototypes by checking if
values of embeddings B are inside
bounding boxes of A.
B1: [8,3,...]
B1 ∈ Box(A1)? 6 ≤ 8 ≤ 9 → Yes
B1 ∈ Box(A2)? 4 ≰ 3 ≤ 6 → No
Score = 1 + 0 + ... < total dimensions
→ B1 ∈ Prototypes
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Result: Frequent Words in Clusters

(Words in multiple clusters removed, e.g. movie, film, dvd)
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Uncertainty Quantification
Representing uncertainty in ML

Ensemble-based Uncertainty Quantification: Bayesian versus Credal Inference [5]

▶ Machine learning is
inseparably connected with
uncertainty.

▶ Uncertainty of a learner can
be represented in different
levels:
▶ Level 0: Deterministic
▶ Level 1: Probabilistic
▶ Level 2: Bayesian
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Uncertainty drift detection
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Model update strategies

▶ No model update: train the model only with the first episode and
never update.

▶ Uncertainty: Update the model only if the uncertainty value of the
new episode is higher than base line uncertainty value (Only requires
labels when making updates).

▶ Error rate: Update the model if the error rate of the new episode is
higher than base line error rate (requires labels for every episode)

▶ Update on every episode: requires labels for every episode and the
most resource intensive
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Experiment and results

Synthetic Data Generation detail
▶ normal_samples = 100000
▶ Drift samples (different

distribution) = 50000
▶ n_features= 50
▶ n_informative_features= 30
▶ n_classes = 5

Results averages over 10 runs
with different random seeds
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Experiment and results

Amazon movie reviews dataset
▶ normal_samples = 10000
▶ n_features= 50
▶ n_classes = 5

Results averages over 10 runs
with different random seeds
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Semalytix’ Business Use Case

▶ (1) Business Use Case and Problem Definition
▶ (2) Data and ML Model
▶ (3) Global Drift Detection
▶ (4) Localized Drift Detection
▶ (5) Interactive Case Study
▶ (6) Results and Discussion
▶ (7) Conclusion
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Semalytix’ Business Use Case
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Business Use Case and Problem Definition

Context:
▶ Semalytix is trying to understand needs and burdens of patients in

online patient experience text data
▶ This data is very heterogeneous: Style, emotional content and level

of medical expertise
▶ We turn this unstructured data into structured data via a large suite

of NLP models
▶ We regularly receive data updates or completely new sources of data

Problem:
▶ Given a model M that was trained on a corpus D1 and a new data

source D2, does M generalize to D2 without substantial loss in
performance?

▶ Without annotated ground truth!
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Experimental Procedure

For experiments, we used data from 5 real use cases
▶ Reference data (D1) is always from the same big training corpus
▶ Target data (D2) data is from five distinct sources that models have

not seen
▶ We sample 10k documents per corpus, pre-filter by relevance for life

sciences and split the documents into sentences.
Experimental scenarios:
▶ Global drift detection in target data
▶ Local drift detection in target data
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Experiment Data and ML Model

▶ The tested model was a transformer-based medical sentiment model

Number of Sentences in D1 Number of Sentences in D2

Corpus Pair 1 36524 24822
Corpus Pair 2 36886 11981
Corpus Pair 3 36306 11700
Corpus Pair 4 37699 11913
Corpus Pair 5 37893 11174

Table: Number of sentences per corpus pairing.
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Global Drift Detection

Research Question: Which methods can be used to detect drift in patient
experience data?
▶ Two established methods [1]: the Kolmorogov-Smirnov test (KS) and

the Least-Squares Density Difference Estimation method (LSDD)
▶ Three other, distribution-distance-based methods:

1. Jensen-Shannon-Distance (JSD) between word count distributions
2. JSD between predicted label distributions
3. JSD between predicted label probability distributions
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Localized Drift Detection
Research Question: Is it possible to localize regions of strong drift in the
target data?
▶ We embed all sentences for a corpus pair D1 and D2 with a

transformer model
▶ Then, we cluster the embedded sentences in D1
▶ For each cluster in D1, we compute the centroid and obtain its k

nearest neighbors in D2. k is chosen as the size of the cluster in D1
▶ This results in a list of cluster pairings that we can examine with drift

detection methods

EML4U Final Presentation 20 / 30



Interactive User Interface Case Study

Research Question: Can the distance measurements from the localized
approach be used in a user interface to decide whether a model update is
necessary?
▶ We sort the local region pairs by descending distance
▶ For the region pairs with highest distance, study subjects were asked

to rate the perceived difference between regions based on four
comparative visualizations:

1. Word Clouds
2. Scatter Plots
3. Predicted Label Bar Charts
4. Predicted Probability Histograms
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Interactive User Interface Case Study
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Interactive User Interface Case Study
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Results of Global and Localized Drift
Detection

▶ Global Drift Detection
▶ KS and LSDD detected drift in all five corpus pairs
▶ KS and LSDD correlate strongly with the Word Count Distribution

Distance and also with the Label Distribution Distance
▶ might be due to the sentiment task, which is sensitive to certain words

▶ The Prediction Probability Distribution Distance does not correlate
with any of the other methods
▶ Does active learning lead into a different direction than our approach?

▶ Local Drift Detection
▶ Variance in distances is much higher
▶ KS and LSDD detect drift in some regions, but not all
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Results of the Interactive Interface Study

▶ Interactive Interface Case Study
▶ Users report that the interface is appealing, but it is hard to find the

perceived effects in the raw data
▶ The ratings from the label bar charts and the scatter plots correlate

with the respective distance metrics
▶ These visualizations seem to provide meaningful information

▶ The ratings for the word clouds and probability histograms did not
correlate with the respective distance metrics
▶ Discard or improve these visualizations
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Conclusion

▶ Finding ground truth for drift detection in real-world patient
experience data is hard!

▶ Future research needs to be invested into ground-truth manifestation
of drift in real-world data sets

▶ The localized approach is promising, especially in a
human-in-the-loop interface

▶ Semalytix has started initiatives to integrate local drift detection into
productive workflows

▶ A lot of open opportunities for fine-tuning the approach
▶ The choice of detection methods and their inputs
▶ How to choose and pair regions
▶ Which visualizations to use
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Thank you for your attention!

▶ This work has been supported by the German Federal Ministry of
Education and Research (BMBF) within the project EML4U under the
grant no 01IS19080

▶ Website: https://eml4u.github.io
▶ Software: https://github.com/EML4U
▶ Questions?
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