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Drift detection & Explanations

» Joint Paper Drift detection in text data with document embeddings [1]
at IDEAL

» Drift detection is crucial for drift explanation
» Tested four drift detectors with two datasets in several scenarios

» Least-Squares Density Difference and Kernel-Two-Sample best Drift
detectors, LSDD better on real-world Twitter dataset

» Lower embedding dimensions tend to produce better drift detection
results
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Drift explanation via Difference

Accentuation [2]
» Drift detected means new distribution differs from old one

» Accentuate these differences by creating many dimension reductions

and choose the one where both distributions differ the most

» Then use this dimension reduction to cluster the data; differentiate
each cluster via labels (tf-idf)
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Figure: Data from the Amazon movie review dataset with one (left) and five star

reviews (right).
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Model update explanation via Contrastive

Explanations [3]
» Contrastive explanations take a data point and calculate the most
similar one of a different classification
» Do this with a lot of points before and after model update and
calculate impact for each parameter
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Figure: Changes in counterfactual explanations for the house prices data set.
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Drift Explanations
via Polygons and Hyperboxes

» Article (in progress):
Explaining Drift in Text Data with Document Embeddings [4]
» Bridging the gap:
» Unsupervised approaches, no labels
» Benchmark dataset to evaluate approaches

» Drift Explanation with Polygons and with Hyperboxes
» Use resulting drift explanations to resolve model conflicts
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Drift Explanation via Polygons
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Drift Explanation via Hyperboxes

Setup: Two sets of embeddings,
A and B.

Step 1: Collect values of single
dimensions

Ai: [2,6,3,8,5,...]

Ay: [7,4,1,0,9,...1]
Dimy(A): [2,7,...]
Dimy(A): [6,4,...]

Step 2: Create 1-dimensional
bounding box for each
dimension. Remove outliers
(percentiles).
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Dimq(A): 12,7,7,6,7,9,9,42,9]
Dimy(A): 6,4,1,6,4,6,4,55,6]
— BoxXwin(A1) = 6, BOXpmax(A1) = 9
— Boxwin(Az) = 4, B0Xmax(A2) = 6

Step 3: Get prototypes by checking if
values of embeddings B are inside
bounding boxes of A.

Bi: 18,3,...]

By € Box(A1)?76 < 8 < 9 —

B1 € Box(A2)?4 £ 3 < 6 —
Score =1+ 0 +... < total dimensions
— By € Prototypes
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Result: Frequent Words in Clusters
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(Words in multiple clusters removed, e.g. movie, film, dvd)

EML4U Final Presentation

8/30



Uncertainty Quantification
Representing uncertainty in ML

Ensemble-based Uncertainty Quantification: Bayesian versus Credal Inference [5]

» Machine learning is
inseparably connected with
uncertainty. \

» Uncertainty of a learner can
be represented in different

levels:
» Level 0: Deterministic . l
» Level 1: Probabilistic - + e

» Level 2: Bayesian
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Uncertainty Quantification
Representing uncertainty in ML

Ensemble-based Uncertainty Quantification: Bayesian versus Credal Inference [5]

» Machine learning is probabinic
inseparably connected with
uncertainty. : L
» Uncertainty of a learner can
be represented in different \‘"\

levels:
» Level 0: Deterministic /\

» Level 1: Probabilistic
» Level 2: Bayesian
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Uncertainty Quantification
Representing uncertainty in ML

Ensemble-based Uncertainty Quantification: Bayesian versus Credal Inference [5]

» Machine learning is
inseparably connected with
uncertainty.

» Uncertainty of a learner can - \
be represented in different \
levels: S . ... wy

» Level 0: Deterministic / \

» Level 1: Probabilistic
» Level 2: Bayesian
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Uncertainty drift detection

peta et Fpocet i - spisocet

Random Forest

In correlation with
Uncertainty Quantification [REENANSNINNINS

EML4U Final Presentation 10/30



Model update strategies

» No model update: train the model only with the first episode and
never update.

» Uncertainty: Update the model only if the uncertainty value of the
new episode is higher than base line uncertainty value (Only requires
labels when making updates).

» Error rate: Update the model if the error rate of the new episode is
higher than base line error rate (requires labels for every episode)

» Update on every episode: requires labels for every episode and the
most resource intensive
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Experiment and results

—— nou (0)
error (34)

— unc(22)
—— all(95)

Synthetic Data Generation detail
» normal_samples = 100000

» Drift samples (different
distribution) = 50000

» n_features= 50

0 20 40 60 80
Episodes

» n_informative_features= 30

— nou (0)
error (34)

— unc(22)

— all(95)

» n_classes=5

Results averages over 10 runs
with different random seeds

4 20 40 60 80
Episodes
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Experiment and results

1.0

Amazon movie reviews dataset

0.6 — nou (0)

» normal_samples = 10000 :(‘;’
» n_features= 50 I

» n_classes=5

Results averages over 10 runs
with different random seeds

— nou (0)
error (8)

— unc(8)
— all(15)
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Semalytix' Business Use Case

» (1) Business Use Case and Problem Definition
» (2) Data and ML Model

» (3) Global Drift Detection

» (4) Localized Drift Detection

» (5) Interactive Case Study

» (6) Results and Discussion

» (7) Conclusion
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Semalytix' Business Use Case

Semantically Enriched Treatment Satisfaction

' ; Raw
Patient-Reported Online Data Document Collection Document Collection PROS

O CLD

Data Acquisition and Pre-Processing Natural Language Processing Visualization and Report Generation
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Business Use Case and Problem Definition

Context:

» Semalytix is trying to understand needs and burdens of patients in
online patient experience text data

» This data is very heterogeneous: Style, emotional content and level
of medical expertise

» We turn this unstructured data into structured data via a large suite
of NLP models

» We regularly receive data updates or completely new sources of data
Problem:

» Given a model M that was trained on a corpus D1 and a new data
source D2, does M generalize to D2 without substantial loss in
performance?

» Without annotated ground truth!
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Experimental Procedure

For experiments, we used data from 5 real use cases
» Reference data (D1) is always from the same big training corpus

» Target data (D2) data is from five distinct sources that models have
not seen

» We sample 10k documents per corpus, pre-filter by relevance for life
sciences and split the documents into sentences.

Experimental scenarios:
» Global drift detection in target data
» Local drift detection in target data
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» The tested model was a transformer-based medical sentiment model

Experiment Data and ML Model

Number of Sentences in D1

Number of Sentences in D2

Corpus Pair 1
Corpus Pair 2
Corpus Pair 3
Corpus Pair 4
Corpus Pair 5

36524
36886
36306
37699
37893

24822
11981
11700
11913
11174
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Global Drift Detection

Research Question: Which methods can be used to detect drift in patient
experience data?

» Two established methods [1]: the Kolmorogov-Smirnov test (KS) and
the Least-Squares Density Difference Estimation method (LSDD)
» Three other, distribution-distance-based methods:

1. Jensen-Shannon-Distance (JSD) between word count distributions
2. JSD between predicted label distributions
3. JSD between predicted label probability distributions
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Localized Drift Detection
Research Question: Is it possible to localize regions of strong drift in the
target data?
» We embed all sentences for a corpus pair D1 and D2 with a
transformer model
» Then, we cluster the embedded sentences in D1
» For each cluster in D1, we compute the centroid and obtain its k
nearest neighbors in D2. k is chosen as the size of the cluster in D1
» This results in a list of cluster pairings that we can examine with drift
detection methods
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Interactive User Interface Case Study

Research Question: Can the distance measurements from the localized
approach be used in a user interface to decide whether a model update is
necessary?
» We sort the local region pairs by descending distance
» For the region pairs with highest distance, study subjects were asked
to rate the perceived difference between regions based on four
comparative visualizations:
. Word Clouds
. Scatter Plots
. Predicted Label Bar Charts
. Predicted Probability Histograms
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Interactive User Interface Case Study
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Interactive User Interface Case Study

Cluster in D1 Nearest Neighbours in D2
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Results of Global and Localized Drift
Detection

» Global Drift Detection

» KS and LSDD detected drift in all five corpus pairs
» KS and LSDD correlate strongly with the Word Count Distribution
Distance and also with the Label Distribution Distance

» might be due to the sentiment task, which is sensitive to certain words
» The Prediction Probability Distribution Distance does not correlate
with any of the other methods
P Does active learning lead into a different direction than our approach?
» Local Drift Detection

» Variance in distances is much higher
» KS and LSDD detect drift in some regions, but not all
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Results of the Interactive Interface Study

» Interactive Interface Case Study
> Users report that the interface is appealing, but it is hard to find the
perceived effects in the raw data
» The ratings from the label bar charts and the scatter plots correlate
with the respective distance metrics
» These visualizations seem to provide meaningful information
» The ratings for the word clouds and probability histograms did not
correlate with the respective distance metrics
» Discard or improve these visualizations
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Conclusion

» Finding ground truth for drift detection in real-world patient
experience data is hard!

» Future research needs to be invested into ground-truth manifestation
of drift in real-world data sets

» The localized approach is promising, especially in a
human-in-the-loop interface

» Semalytix has started initiatives to integrate local drift detection into
productive workflows

» A lot of open opportunities for fine-tuning the approach

» The choice of detection methods and their inputs
» How to choose and pair regions
» Which visualizations to use
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Thank you for your attention!

» This work has been supported by the German Federal Ministry of
Education and Research (BMBF) within the project EML4U under the
grant no 011S19080

» Website: https://eml4u.github.io
» Software: https://github.com/EML4U
> Questions?
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